Finitary Reducibility on Equivalence Relations
نویسندگان
چکیده
We introduce the notion of finitary computable reducibility on equivalence relations on the domain ω. This is a weakening of the usual notion of computable reducibility, and we show it to be distinct in several ways. In particular, whereas no equivalence relation can be Π n+2-complete under computable reducibility, we show that, for every n, there does exist a natural equivalence relation which is Π n+2-complete under finitary reducibility. We also show that our hierarchy of finitary reducibilities does not collapse, and illustrate how it sharpens certain known results. Along the way, we present several new results which use computable reducibility to establish the complexity of various naturally defined equivalence relations in the arithmetical hierarchy.
منابع مشابه
On Polynomial-Time Relation Reducibility
We study the notion of polynomial-time relation reducibility among computable equivalence relations. We identify some benchmark equivalence relations and show that the reducibility hierarchy has a rich structure. Specifically, we embed the partial order of all polynomial-time computable sets into the polynomial-time relation reducibility hierarchy between two benchmark equivalence relations Eλ ...
متن کاملOn the Complexity of the Uniform Homeomorphism Relation between Separable Banach Spaces
Recently, there has been a growing interest in understanding the complexity of common analytic equivalence relations between separable Banach spaces via the notion of Borel reducibility in descriptive set theory (see [Bos] [FG] [FLR] [FR1] [FR2] [Me]). In general, the notion of Borel reducibility yields a hierarchy (though not linear) among equivalence relations in terms of their relative compl...
متن کاملOn Σ11 equivalence relations over the natural numbers
We study the structure of Σ1 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly Σ1 (i.e. Σ 1 1 but not ∆ 1 1) equivalence classes. We also show the existence of incomparable Σ1 equival...
متن کاملEquivalence Relations That Are Σ03 Complete for Computable Reducibility - (Extended Abstract)
Let E,F be equivalence relations on N. We say that E is computably reducible to F , written E ≤ F , if there is a computable function p : N→ N such that xEy ↔ p(x)Fp(y). We show that several natural Σ 3 equivalence relations are in fact Σ 3 complete for this reducibility. Firstly, we show that one-one equivalence of computably enumerable sets, as an equivalence relation on indices, is Σ 3 compl...
متن کاملMeasure Reducibility of Countable Borel Equivalence Relations
We show that every basis for the countable Borel equivalence relations strictly above E0 under measure reducibility is uncountable, thereby ruling out natural generalizations of the Glimm-Effros dichotomy. We also push many known results concerning the abstract structure of the measure reducibility hierarchy to its base, using arguments substantially simpler than those previously employed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 81 شماره
صفحات -
تاریخ انتشار 2016